Site code ¹	MM436						
Location	Mount Kinross, Willowvale Road, Lismore District						
Landform	Undulating low hills						
Geology	Intrusive: Devonian granites, Wallinduc Formation						
Element	Mid slope						

Profile morphology

Horizon	Depth (cm)	Description						
A1	0-30	Dark brown (10YR3/3); coarse sandy loam; hardsetting surface condition; weak consistence (dry); clear boundary to:						
A2	30-50	Pale brown (10YR6/3), light grey (10YR7/2 dry); sandy clay loam; sharp boundary to:						
B21	50-65	Yellowish brown (10YR5/4) with light yellowish brown (10YR5/8) mottles; heavy clay; strong coarse blocky structure; few segregations; boundary to:						
B22	65+	Yellowish brown (10YR5/4) with light yellowish brown (10YR5/8) mottles; heavy clay; strong coarse blocky structure; few segregations; boundary to:						

ASC: ?; Mottled-Hypernatric; Brown Sodosol

Analytical data²

Sample depth	р	H	EC	NaCl	Ex Ca	Ex Mg	Ex K	Ex Na	Ex Al	Ex acidity
cm	H ₂ O	CaCl ₂	dS/m	%	cmolc/kg	cmol _c /kg	cmolc/kg	cmolc/kg	mg/kg	cmol _c /kg
0-30	4.9	N/R	0.11	N/R	N/R	N/R	N/R	N/R	N/R	7.6
30-50	0	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	2.3
50-65	7	N/R	0.19	0.02	N/R	N/R	N/R	N/R	N/R	2.6
65+	7.6	N/R	0.14	N/R	N/R	N/R	N/R	N/R	N/R	3.9
	depth cm 0-30 30-50 50-65	depth H2O 0-30 4.9 30-50 0 50-65 7	depth The constraint of th	depth H2O CaCl2 dS/m 0-30 4.9 N/R 0.11 30-50 0 N/R N/R 50-65 7 N/R 0.19	depth H2O CaCl2 dS/m % 0-30 4.9 N/R 0.11 N/R 30-50 0 N/R N/R N/R 50-65 7 N/R 0.19 0.02	depth H2O CaCl2 dS/m % cmole/kg 0-30 4.9 N/R 0.11 N/R N/R 30-50 0 N/R N/R N/R N/R 50-65 7 N/R 0.19 0.02 N/R	depth H2O CaCl2 dS/m % cmolc/kg cmolc/kg 0-30 4.9 N/R 0.11 N/R N/R N/R 30-50 0 N/R N/R N/R N/R N/R 50-65 7 N/R 0.19 0.02 N/R N/R	depth H2O CaCl2 dS/m % cmolc/kg cmolc/kg cmolc/kg 0-30 4.9 N/R 0.11 N/R N/R N/R N/R 30-50 0 N/R N/R N/R N/R N/R N/R 50-65 7 N/R 0.19 0.02 N/R N/R N/R	depth H2O CaCl2 dS/m % cmolc/kg	depth cmH2OCaCl2dS/m%cmol/kgcmol/kgcmol/kgcmol/kgcmol/kgmg/kg0-304.9N/R0.11N/RN/RN/RN/RN/RN/RN/R30-500N/RN/RN/RN/RN/RN/RN/RN/RN/R50-657N/R0.190.02N/RN/RN/RN/RN/R

01: 1 / / / A	0 1	10	DIAD	1/0	TO	-	0	0 0	D 11
Site MM236	Sample	FC	PWP	KS	FS	Z	С	Org C	Bulk
	depth	(-10kPa)	(-1500kPa)						density
Horizon	cm	%	%	%	%	%	%	%	t m-3
A1	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R
A2	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R
B21	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R
B22	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R

Management considerations

Strong texture contrast between the surface soil and the subsoil is a very important soil feature and can impact upon the permeability aspects of the profile. The surface soil is hardsetting and acidic, while the subsoil is heavy clay. Increasing the organic matter of the soil will help to reduce the hardsetting nature, while the application of lime to the topsoil should raise the pH.

¹ Source: Maher JM, Martin JJ (1987) Soils and landforms of south-western Victoria. Department of Agriculture and Rural Affairs. Research Report No. 40.

² Source: Government of Victoria, State Chemistry Laboratory.